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Abstract: Batch scale flotation tests are generally performed for testing effects of flotation reagents on 
flotation performance. This method becomes costly and time-consuming for testing a number of 
flotation reagents such as collectors, depressants and activators. Therefore, developing alternative low-
cost, fast and sensitive methods have recently been the subject of intense research to obtain a better 
flotation performance. The electrochemical techniques have been used for the surface characterization 
of sulfide minerals. Electrochemical Impedance Spectroscopy (EIS) is one of these techniques that can 
provide significant information related to surface characteristics, reagent adsorption on the sulfide 
minerals. In this study, EIS was used as an alternative technique to the conventional batch scale flotation 
tests for pre-screening of various flotation reagents using two pyrite samples containing different 
contents of Au and As. Sodium cyanide (NaCN), sodium metabisulfite (SMBS), and a polymeric 
depressant Aero 7261A were tested as depressants for two pyrite samples (Sample A from a Carlin- 
trend ore and Sample B from a Sulfidic ore from South America) having different electrochemical 
characteristics. EIS results showed that the effects of the sequence of addition of collector (Potassium 
amyl xanthate - KAX) and depressant were also investigated to evaluate the stability of depressant and 
collector compounds formed at the surface. The sequence of addition of the collector and depressants 
was significant for Sample A but not for Sample B. The results show that EIS can be used as an effective 
tool for testing the performance of various flotation reagents and their mixtures on sulfide minerals.  
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1. Introduction 

Pyrite (FeS2, iron disulfide) is known as the earth’s most abundant sulfide mineral. It is often associated 
as a gangue mineral with valuable sulfide minerals containing copper, lead, zinc, and gold (Li et al, 
2016; Chandra and Gerson 2010; Moslemi and Gharaghi 2017; Rath et al. 2000).  It is one of the most 
common sulfide minerals used in studying transition metal sulfides because of its excellent properties 
such as electrochemical performance, degradation, optical, and electronic properties (Lai et al, 2012). 

Flotation is a physico-chemical separation process used as an industrial process for selectively 
separating valuable minerals from gangue (Ai et al, 2017). Iron sulfide minerals (pyrite, arsenian pyrite 
and arsenopyrite) are often considered as sulfide gangue minerals in many of these flotation processes, 
and the flotation chemistry is adjusted for the depression of these minerals. However, in some gold ores, 
these minerals, particularly arsenian pyrite, are considered valuable minerals as they contain gold, and 
hence the flotation chemistry is adjusted to increase their flotation kinetics and recovery (Kappes et al, 
2010).  

 Many researchers have shown that there is a strong relationship between electrochemical reactions 
occurring on the pyrite surface and its flotation process (Moslemi and Gharaghi 2017). The presence of 
arsenic changes the electrochemical properties of arsenian pyrite and arsenopyrite, and increases rate 
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of surface oxidation. The selective separation of sulfide minerals by flotation mostly relies on the use of 
various collectors and depressants (Li et al. 2015). Collectors adsorb on the mineral surface, increase 
hydrophobicity to enhance attachment of air bubbles and flotation to the froth phase (Ackerman et al, 
1987). Depressants are known as modifiers that influence the attachment of collectors to the mineral 
surface. Collectors for pyrite flotation include xanthate, dithiophosphate, dithiocarbamate, 
thionocarbamate, and thiourea, among which, xanthate is preferred mostly due to its strong collecting 
ability (Huang et al, 2019; Mu et al, 2020). Inorganic reagents containing sulfides, hydroxides, cyanide, 
and hydrogen peroxide are commonly used as depressants for pyrite flotation (Rath et al., 2000; Huang 
et al, 2019). Therefore, it is important to know the effects of depressants on surface chemistry and 
flotation behaviour of the sulfide minerals in flotation.  

The flotation of sulfide minerals depends on the electrochemical reactions occurring on the mineral 
surface (Moslemi and Gharaghi 2017; Pauporte and Schuhmann 1996). Separation performance of 
flotation reagents and mechanism of selective separation were investigated through various laboratory 
scale flotation methods, contact angle measurements, surface analytical techniques such as X-ray 
Photoelectron Spectroscopy (XPS), Tof-SIMS, Raman Spectroscopy, etc. and electrochemical techniques 
(Zhang et al, 2019; Velasquez et al 2005; Valdivieso et al 2004; Zheng et al, 2019). The XPS technique is 
costly and involves complex data processing for analyzing the changes in oxidation state of diverse 
chemical elements on the surface of minerals. The simpler surface characterization techniques such as 
zeta potential and contact angle measurements are also used for surface chemistry studies. However, 
these techniques should be used with other surface analytical methods to understand the interactions 
and the type of species occurring on the surface. Therefore, many researchers prefer the electrochemical 
tools for surface characterization of the sulfide minerals as they are considered sensitive and 
reproducible analytical techniques with high accuracy, allowing an in-situ detection of the formation of 
surface layers on the mineral electrode (Guo et al, 2020). The most common electrochemical techniques 
used in the sulfide minerals research include cyclic voltammetry (CV), open circuit potential (OCP), 
polarization curves, electrochemical impedance spectroscopy (EIS), potentiometry, and coulometry, etc.  
(Mu et al, 2017). The EIS measurement technique is the most effective technique as it can be used to 
determine the species formed on mineral surfaces independent of the type of reactions (Zhao et al, 2017). 
EIS measurements pack multiple frequencies in a short duration signal, thus enabling its use in 
understanding both slow and fast reactions.  

In recent years, the use of EIS has become a more generally applied technique by many authors to 
investigate the physical and chemical processes occurring at mineral/electrolyte interfaces (Mu et al, 
2017; Nicol, 2017).  Mu et. al. investigated the effect of three lignosulfonate-based biopolymers (DP-1775, 
DP-1777, and DP-1778) as pyrite depressants using EIS, and showed that DP-1778 was the strongest 
depressant for pyrite, followed by DP-1775 and DP-1777 (Mu et al, 2016a). Studies on the adsorption 
behavior of the pyrite-xanthate-cyanide system at pH 5 via CV and EIS were performed by Guo (Guo, 
2016).  This study reported that the pyrite surface upon xanthate adsorption was poisoned by cyanide 
with the formation of an iron cyanide complex (Prestidge et al, 1993).  

Effects of various flotation reagents (collectors, activators, depressant) on flotation performance are 
generally determined by bench-scale flotation tests, which require a large amount of material, costly 
and time-consuming. However, it is very well known that most of the sulfide minerals are 
semiconductor with variable electrochemical properties, which mainly depends on ore genesis, surface 
defects and also the association with other sulfide minerals (Abramov and Avdohin, 1997). Therefore, 
electrochemical techniques are suitable for investigating surface chemistry, adsorption of flotation 
reagents, and thus determining floatability of the sulfide minerals under various flotation conditions. 
The electrochemical techniques require a small amount of materials compared to bench-scale flotation 
tests. A large number of parameters can be tested in a relatively short time and at a relatively low cost. 
For most of the sulfide minerals, a direct correlation between collector adsorption and electrochemical 
response could be observed (Allison et al.,1972; Goold and Finkelstein 1972; Ekmeçi et al, 2010). 
Therefore, it is possible to use an electrochemical measurement as a proxy to estimate the adsorption of 
flotation reagents (collectors, activators, depressants) and hence correlate with flotation behaviour. 

Inorganic depressants (cyanide, hydroxyl ions, sulfur-oxy species, etc.) and organic depressants 
(polsaccharides polymers, lignosulfonate-based biopolymers, polyacrylamide polymers, etc) have been 
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widely used in mineral separation (Mu et al, 2016).  Among these, cyanide is known as an effective 
depressant for pyrite flotation. The depression of pyrite flotation by cyanide may reduce the mixed 
potential and inhibit the electrochemical activity on the pyrite surface. Sulfur-oxy species such as 
metabisulfite (S2O52-) have also been used in flotation as pyrite depressants to replace cyanide. The 
mechanism of pyrite depression by sulfoxyl species is rather complex, and it is indicated that the 
presence of sulfite consumes dissolved oxygen leading to a drop of the pulp potential. Moreover, copper 
sulfite precipitation maybe occurs that limit the extent of activation of pyrite. Organic depressants have 
attracted considerable attention as alternative depressants due to their rich sources, biodegradable 
nature and relatively low cost (Bicak et al, 2007). However, organic depressants such as polyacrylamide 
are thought to adsorb on the mineral surface via various interactions because they are complex polymer 
structures. Mineral depression using polymer depressants depends on their chemical characteristics 
such as functional groups, charge density and molecular weight, and a number of mechanisms can be 
proposed. For example, electrochemical attraction can be formed between oppositely charged polymer 
and mineral surfaces. Also, hydrophobic interaction can be achieved between non-polar segments of 
polymer chains and hydrophobic areas of mineral surfaces.  Hydrogen bonds may form between 
hydroxyl groups and hydrated metallic sites on mineral surfaces, or chemical interactions between the 
anionic functional groups (such as carboxylate or sulfonic groups) and the metallic cations on mineral 
surfaces may cause the binding of polymers (Mu et al, 2016).   

In a previous study, the authors used EIS as the prime electrochemical technique to investigate the 
adsorption mechanisms of different types of collectors on pyrite (Ertekin et. al, 2016).  In this study, the 
adsorption behaviour of NaCN, sodium metabisulfite (SMBS), and Aero7261A (a polymeric depressant 
from Solvay) was investigated by the EIS technique ın presence and absence of collector. Two pyrite 
samples having different chemical and mineralogical characteristics were used in the experiments. The 
impact of the sequence of addition of collector and depressant was also discussed. This study 
demonstrates that EIS technique can be used as a fast and low-cost reagent pre-screening technique in 
the flotation of sulfide ores.  

2. Materials and methods 

2.1. Materials 

Two samples containing mainly pyrite, arsenopyrite, and arsenian pyrite as iron sulfide minerals and 
three different depressants were used. Sample A was prepared from a Carlin trend ore, and Sample B 
from a sulfidic ore from South America. Sample A was taken from the final pyrite concentrate of a gold-
pyrite flotation process, and Sample B from the pyrite scavenger flotation concentrate of a different 
gold-pyrite flotation process. The mineral content of Sample A and Sample B was identified by XRD 
measurement. The results of the analysis were determined by Rietveld analysis of XRD patterns (Ertekin 
et. al, 2016). Mineralogical characterization showed that Sample B was composed of 70% pyrite, 19% 
quartz, and 11% pyrophyllite. Sample A was composed of 48% quartz, 27% pyrite, and 10% illite with 
lesser amounts of pyrite (2.38%) and arsenopyrite (1.44%). Chemical analysis of the two samples is given 
in Table 1. Sample A has high Au and As, but lower sulfide mineral content compared to Sample B.  

Table 1. Chemical analysis of Sample A and Sample B 

Pyrite 
samples 

S 
 % 

Fe 
 % 

Al  
% 

Au 
ppm 

As 
ppm 

Ag 
ppm 

Cu 
ppm 

Zn 
ppm 

Ca  
ppm 

Sample A 12.26 12.84 4.42 9.111 6527 6.3 612 4541 7644 
Sample B 40.02 34.23 1.94 1.103 794 14.3 3204 107 207 

In the literature, Carlin trend ores are described as being generally difficult to treat.  These ores 
typically have to undergo several additional processing stages for gold recovery (Kappes and Gathje, 
2010). Arsenian pyrite typically contains the majority of the gold values for Carlin-trend ores. Arsenic-
bearing minerals are not very easy to separate from other valuable (non-arsenic-bearing) minerals, and 
they can be difficult to selectively depress with standard depressants (Kappes et al, 2010). 
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Sodium cyanide (NaCN, Aldrich > 97%,), sodium metabisulphite (SMBS, Merck, ≥ 99.5%), and 
Aero7261A (Solvay) were used as depressants in the experiments. Aero7261A is a modified 
polyacrylamide based water-soluble polymer recommended for depression of iron sulphide minerals. 
The functionalized polymer is a proprietary blend and developed as an alternative to cyanide as a 
depressant in flotation. Probably, various functional groups such as carboxyl, sulfonate, hydroxyl or 
thiourea attached to polyacrylamide polymer can depress iron sulfide minerals. The interaction between 
mineral surface and polymer depends on the type of reacting groups in their complex chemical 
structure. Technical grade potassium amyl xanthate (KAX) was used as a collector. All electrochemical 
experiments were performed in a buffer solution (pH 9.2) of 0.05 M Na2B4O7.10H2O (Merck, ≥ 99.5%).  
Depressant and collector concentrations were set to 200 ppm in all EIS measurements. This is a typical 
concentration used in most of the surface chemistry studies to obtain multilayer adsorption (Mu et al, 
2016b). High purity nitrogen was used to provide an inert atmosphere for electrochemical 
measurements. All chemicals were purchased from commercial sources and were of the highest purity 
available. They were used without further purification.  

2.2. Preparation of mineral electrodes and electrochemical measurements 

The sulfide mineral content of a mineral electrode should be high to obtain a large surface area in the 
electrode for getting a better electrochemical response. Pyrite content of Sample B was 70% which was 
sufficient to fabricate the mineral electrode. However, Sample A contains only 27% iron sulfide 
minerals, which should be increased to get a strong electrochemical signal. Therefore, a dry electrostatic 
separation technique was applied to separate the non-sulfide minerals and increase the sulfide mineral 
content of the sample before electrode fabrication.  The electrostatic separation method is a physical 
process and uses the differences in electrical conductivity of the minerals. Pyrite is a good conductor 
mineral, while quartz is an insulator (Knoll and Taylor, 1985). The electrostatic separation experiment 
increased the amount of sulfide minerals by 30% in Sample A, which was suitable for the use of mineral 
electrode fabrication.  

A novel mineral electrode fabrication method was used to prepare the electrodes using two different 
pyrite samples, as described in the published papers of the authors (Ertekin et al, 2016; Ekmekçi et al, 
2016) . In this study, the samples were taken from flotation concentrates, and the sulfide mineral 
particles were expected to be covered with flotation reagents. Therefore, both samples were washed by 
diluted HCl and acetone sequentially.  After that, the samples were rinsed with distilled water to 
remove any oxidized and organic species from the surface. The washed samples were dried in a vacuum 
desiccator and then homogenized with graphite and a conductive binder (conductive polymer 
polyaniline) to produce a pellet of 1.3 cm diameter. The mineral electrode was fabricated by mounting 
the pellet in an electrochemical inert epoxy resin. In the literature, electrode polishing is a well-known 
procedure. The alumina, silicon carbide, diamond, or boron carbide are commonly used for electrode 
polishing, depending on the applications (Monteiro and Koper, 2019). The most common procedure for 
graphite containing surface is polishing the prepared electrode with alumina paste (Kariuki, 2012). 
Before the electrochemical experiments, the electrode surface was polished using alumina paste to 
create a fresh surface, which allowed the use of the same electrode for all electrochemical experiments 
performed in this study.  

The surface area of Sample A and Sample B mineral electrodes was measured by using an optical 
microscope equipped with Clemex Image Analysis system as 0.39 cm2 and 0.43 cm2 respectively (Fig. 
1).  

Various electrochemical methods can be employed for surface chemistry analysis of sulfide minerals. 
In this study, EIS was used to investigate the changes in surface characteristics of the pyrite particles in 
the mineral electrodes. Gamry Reference 600 Potentiostat-Galvanostat was used with a faraday cage. 
The measurements were performed in a standard three-electrode electrochemical cell containing a 
standard calomel electrode (reference electrode), a platinum wire (counter electrode), and a mineral 
electrode (working electrode). All EIS measurements were performed in the frequency range of 1×105 

to 1×10−2 Hz.  All potentials shown in this paper were converted to the standard hydrogen electrode 
(SHE) scale. A constant polarization potential (100 mV) was applied during EIS measurements. The 
buffer solution (pH 9.2) of 0.05 M Na2B4O7.10H2O was used as an electrolyte, and all measurements 
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were carried out at room temperature (~25°C).  The pyrite electrodes were polished with alumina and 
thoroughly rinsed before each experiment. High purity de-ionized water was used in all experiments. 

The impedance spectrum can be modelled by an electrical circuit with physical elements to explain 
a simple charge transfer process at the mineral/solution interface (Zhao et al, 2017). In this study, the 
EIS data of pyrite electrodes in the absence and presence of depressants and collector (KAX), were fitted 
to an equivalent electrical circuit using Gamry Echem Analyst software. Various equivalent circuit 
models were examined to describe the processes on the electrode surface (pyrite/collector or 
depressant/electrolyte junction). The equivalent electrical circuit with the smallest chi-square (χ2) value 
was chosen, as shown in Fig. 2. Thus, minimum errors were obtained. A similar equivalent circuit model 
was used to explain the electrochemical process on the pyrite electrode surface (Guo, 2016; Guo et al, 
2016).  

 
Fig. 1. Optical microscope image of polished mineral electrode surfaces of Sample A and Sample B 

 
Fig. 2. Schematic view of the mineral electrode with an equivalent electrical circuit for modeling adsorption of 

depressants, collector, and the sequence of addition of collector and depressants 

Pyrite is a natural semiconductor, and the electrochemical reactions on the electrode surface can 
take place easily according to electrooxidation of reaction on pyrite surface in alkaline media.  Iron 
species such as Fe(OH)3, FeOOH, and FeSO4 may form at the surface (Velasquez et. al, 2005; Jiang et al 
1988). As shown in Fig. 2, Rs is the electrolyte resistance, and Rct represents the resistance of charge 
transfer through the iron-deficient layer. Rp element is a measure of charge transfer in the pores of the 
product layer, which is described as Fe-Hydroxide/Oxide layer (Ertekin et al 2016; Pang and Chander 
1990). Csl corresponds to the capacitance of the surface layer, which indicates the formation of surface 
layer such as the initial pyrite oxidation species or the adsorbed collector/depressant species (Guo et al, 
2016). The double-layer capacitance (Qdl) is represented in terms of a constant phase element (CPE) that 
indicates a nonhomogeneous surface (Ekmekçi et al, 2010). Besides, Rct element is related to the 
electrochemical process in the product coating, which helps to explain the formation of collector or 
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depressant layers. Such electrochemical processes may occur as charge transfer reactions, adsorption, 
and desorption processes. The net rate of electrochemical reactions on electrode surfaces is inversely 
proportional to Rct value (Mu et. al, 2017). In order to compare the adsorption behaviour of the 
depressants and the collector quantitatively, the EIS spectrum of each experiment was fitted to the 
equivalent electrical circuit model. The calculated Rct values were compared to explain the mineral 
behaviour in the absence and presence of depressants and collector.  

3. Results and discussion 

Understanding the surface chemistry of minerals is of great importance in order to explain flotation 
processes. Many factors such as pH, type of reagents, oxygen content, etc. can affect the reactions 
occurring on the mineral surface. In this study, the adsorption behaviour of three depressants (NaCN, 
SMBS, and Aero7261A) used mainly for pyrite depression was investigated by the EIS technique. NaCN 
is known as one of the most common depressants for pyrite in the flotation process (Zhao et al, 2016). 
Simply, cyanide compounds are dissolved in water according to the following reaction: 

A(CN)x  D A+X + x(CN)-     (A: alkali metal, X: the valence of the alkali metal) 
The most acceptable reaction for the poisoning of pyrite surface by cyanide has been found to be the 

formation of insoluble cyanoferrate complexes. Hexacyanide compounds are formed by the reduction 
of the ferric hydroxide layer that occurred on the pyrite surface in the presence of cyanide (Moslemi and 
Gharabaghi 2017; Kocabag and Güler 2007): 

5Fe(OH)3 + 12CN- + 15H+ + 3e- D Fe3[Fe(CN)6]2 + 15H2O 
Depression of pyrite by SMBS is more complicated compared to cyanide. The formation of a metal 

sulfite layer can inhibit the adsorption of the collector on the pyrite surface (Mu et al 2016b). It has also 
been reported that sulfite ions promote the formation of iron/copper hydroxides on the pyrite surface 
due to oxygen consumption causing the surface to become hydrophilic (Mu et al, 2016a).  

Aero7261A is a modified polyacrylamide based water-soluble polymer used for the depression of 
iron sulphide minerals. The chemistry and interaction of this polymeric compound upon the 
heterogeneous mineral surface adsorption are highly complex due to the presence of various functional 
groups. Generally, the polymer is thought to adsorb onto the mineral surface via various interactions 
such as electrostatic, hydrogen bonding, chemical, and/or hydrophobic interactions (Mu et al, 2016a, 
Boulton et al 2001).  

In this study, EIS experiments were performed in an alkaline solution (pH 9.2), where the pyrite can 
be depressed by the use of cyanide, SMBS and polyacrylamide-based depressants. Moderately alkaline 
pulp conditions are generally preferred over strongly alkaline conditions (>pH 11.5) for pyrite 
depression to minimize lime consumption and scaling problems in flotation circuits (Guo et al 2016). 
Effects of the sequence of addition of collector and depressant were also investigated.  

3.1. Results of EIS measurements on Sample A 

Fig. 3 shows Bode and Nyquist plots of Sample A obtained in the presence and absence of the 
depressants and the collector. The electrical equivalent circuit model parameters were derived by fitting 
the experimental data using Gamry Echem Analyst software. The impedance parameters obtained for 
Sample A electrode in the presence of collector and depressants are summarized in Table 2. The fitting 
curves are shown as solid lines in the Nyquist plots. The fitting error (Chi-squared) to the proposed 
equivalent electrical circuit was very small (<1x10-3) for all experiments (Table 2).  

Rct represents the resistance of charge transfer through the iron-deficient layer, which changes 
according to the reaction between iron and depressants. The Rct is inversely proportional with the 
surface reactivity. A lower Rct value indicates a higher current flow for the electrochemical reactions on 
the pyrite surface (Mu et al, 2013). In other words, pyrite has high surface reactivity when the Rct value 
is low.  

Adsorption of xanthate on sulfide minerals leads to a decrease in capacitance due to its low dielectric 
constants (Guo et al, 2016; Venter and Vermaak, 2018). The capacitance is inversely proportional with 
surface resistance, but the adsorption of xanthate does not necessarily increase the Rct. Addition of 
xanthate  can  decrease  both  the capacitance and Rct due to the removal of oxidation products from the  
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Fig. 3. EIS results of Sample A obtained in the presence and absence of different types of depressants upon KAX 
at pH 9.2 and 100 mV polarization potential (Experimental (scattered line) and fitted (solid line) for Nyquist plot) 

Table 2. Parameters of the equivalent circuit simulated from EIS data for Sample A 

Sample A 
Rs 

(Ω*cm2) 
 Csl 

 (F*cm-2)  
Rp 

(Ω*cm2) 
Yo  

(Ssncm-2) 
n 

Rct 

(Ω*cm2) 
Chi-squared 

  c2       
NiI 27.84 2.50´10-5 1.20´101 3.23´10-4 0.62 3.94´104 1.86´10-4 

KAX 31.30 2.64´10-5 1.41´101 2.62´10-4 0.64 1.21´104 3.68´10-4 
NaCN 30.83 4.64´10-5 2.58´101 2.26´10-4 0.61 1.43´105 2.75´10-3 

NaCN:KAX 29.87 2.79´10-5 1.29´101 3.10´10-4 0.63 6.20´104 6.13´10-4 
KAX:NACN 29.92 1.43´10-6 1.09´101 2.85´10-4 0.61 6.08´104 1.04´10-3 

SMBS 32.84 3.79´10-5 3.49´101 1.76´10-4 0.68 9.28´104 5.92´10-4 
SMBS:KAX 34.40 2.01´10-5 1.32´101 2.85´10-4 0.62 2.84´104 3.69´10-4 
KAX:SMBS 34.44 1.12´10-5 1.17´101 2.42´10-4 0.62 5.93´104 2.86´10-4 

7261 A 35.87 4.28´10-5 2.39´101 1.68´10-4 0.60 4.72´104 7.59´10-4 
7261 A: KAX 33.11 1.65´10-5 1.54´101 2.72´10-4 0.62 5.66´104 2.74´10-4 
KAX:7261 A 34.95 1.25´10-5 1.38´101 2.55´10-4 0.62 5.77´104 6.09´10-4 
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surface (Ertekin et al, 2016). However, the depressants affect directly the surface resistance (Rct) through 
the formation of stable and hydrophilic species at the surface.  Therefore, Rct was taken as a proxy for 
evaluation effects of various depressants in the presence and absence of xanthate.  

As shown in Table 2, the interaction between Sample A and KAX has the lowest Rct, which indicates 
a higher rate of adsorption of the collector.  The addition of NaCN and hence the formation of 
cyanoferrate complex on the surface of pyrite increased Rct, indicating surface coverage by a stable and 
electrochemically passive hydrophilic layer. Rct values were lower in the presence of polymer-based 
depressant (Aero7261A) than the other depressants.   

The adsorption process is coupled with the charge transfer in the pyrite-collector/depressant system 
because it is generally agreed that the composition and structure of the surface products depend on the 
redox potential (Guo, 2016).  Therefore, the adsorption behaviour of the depressants used in this study 
was evaluated based on coating layer resistance (Rct) values. The Rct is inversely proportional to the net 
rate of the reactions in the coating layer on electrode surfaces (Mu et al, 2017). Fig. 4 shows the Rct values 
estimated for Sample A under different experimental conditions. The notation “Nil” represents the 
measurements in the absence of collector and depressants. “KAX” corresponds to the measurements in 
the presence of collector potassium amyl xanthate. Influence of depressant addition and sequence of 
addition of the depressants and the collector is also illustrated in the same graph. It must be noted that 
the comparison between the different experimental conditions should be done in reference to their base 
condition, i.e. “KAX” and “Dep” should be compared to “Nil”; “Dep:KAX” to “Dep”; “KAX:Dep” to 
“KAX” as base conditions.  

Fig. 4 shows that the addition of NaCN increased the coating resistance considerably. This means 
that the adsorption of NaCN, presumably in the form of (Fe4(Fe(CN)6)3), caused the formation of a 
highly electrochemically resistive layer. Similar experiments were performed in the presence of SMBS 
and 7261A as pyrite depressants. These depressants also increased Rct but at lower levels than that of 
NaCN. The depressing strength of the three depressants was in the order of NaCN>SMBS>7261A 
according to the Rct values. These results are in agreement with the literature investigating the effects of 
these depressants on the flotation of pyrite in sulfide ores (Moslemi and Gharabaghi, 2017; Mu et al, 
2016a; Zhao et al, 2016; Boulton et al, 2001; Zhu et a, 2013).  

Effects of the sequence of addition of NaCN and KAX were also investigated. The Rct values of 
“Dep:KAX” were compared to “Dep” as the base condition. Addition of KAX after conditioning with 
NaCN and SMBS decreased the Rct values considerably, showing adsorption of collector even after 
conditioning with these strong depressants. This could be attributed to the low sulfur content but high 
Au and As contents of Sample A (Table 1). It is likely that there were spots on the pyrite surface where 
the collector molecules could adsorb. 7161A was the least effective depressant and increased slightly 
the Rct value. The addition of KAX did not change the Rct significantly, and it was similar to that of 
measured with NaCN:KAX.    

 
Fig. 4. Coating resistance (Rct) of Sample A under different experimental conditions at pH 9.2, 100 mV 

polarization potential. (NiI: absence of collector and depressants; KAX: collector; Dep:depressant; Dep:KAX 
depressant addition prior to KAX, and KAX:Dep KAX addition prior to depressant) 
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Effects of addition of depressant after conditioning with KAX were also investigated. The Rct values 

of “KAX:Dep” were compared with “KAX” as the base condition. It is clear that addition of depressant 
removed some of the previously adsorbed collector molecules and produced Rct values close to that of 
“Dep:KAX” condition. The results show that the sequence of addition of the depressants and the 
collector was not significant for Sample A, except SMBS. 

3.2. Results of EIS measurements on Sample B 

Similar experiments were performed using Sample B electrode. The chemical and electrochemical 
characteristics of Sample B were different from that of Sample A. Sample B was less electrochemically 
reactive. Therefore, differences in adsorption behaviour of the depressants and collector could be 
expected between the two pyrite samples.   

Fig. 5 shows Bode and Nyquist plots of Sample B obtained in the presence and absence of the 
depressants and the collector. The fitted model parameters from the same equivalent circuit are given 
in Table 3.  Adsorption behaviour of the depressants and collector was evaluated based on the calculated 

 
Fig. 5. EIS results of Sample B obtained in the presence and absence of different types of depressants at pH 9.2 

and 100 mV polarization potential (Experimental (scattered line) and fitted (solid line) for Nyquist plot) 
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Table 3. Parameters of the equivalent circuit simulated from EIS data for Sample B 

Sample B 
Rs 

(Ω*cm2) 
 Csl 

 (F*cm-2)  
Rp 

(Ω*cm2) 
Yo  

(Ssncm-2) 
n 

Rct 

(Ω*cm2) 
Chi-squared 

c2       
NiI 32.72 2.86´10-5 2.98´101 1.14´10-4 0.64 2.58´104 1.63´10-3 

KAX 32.07 1.86´10-5 1.59´101 1.66´10-4 0.62 9.72´103 1.52´10-3 
NaCN 34.40 3.05´10-5 4.04´101 1.14´10-4 0.63 1.53´105 2.95´10-3 

NaCN:KAX 33.91 1.42´10-5 7.89´100 1.64´10-4 0.63 1.55´106 5.01´10-4 
KAX:NACN 37.83 1.20´10-5 1.20´101 1.68´10-4 0.60 1.20´105 2.42´10-4 

SMBS 36.93 3.95´10-5 4.25´101 1.11´10-4 0.66 8.21´104 1.86´10-3 
SMBS:KAX 41.28 1.24´10-5 9.98´100 1.92´10-4 0.57 8.77´104 2.04´10-4 
KAX:SMBS 37.80 5.42´10-6 8.80´100 1.35´10-4 0.55 1.17´105 6.37´10-4 

7261 A 38.01 3.56´10-5 3.29´101 1.36´10-4 0.64 7.10´104 1.03´10-3 
7261 A: KAX 33.73 1.15´10-5 6.72´100 1.70´10-4 0.58 1.05´105 8.82´10-5 
KAX:7261 A 38.88 8.19´10-6 1.26´101 1.40´10-4 0.58 1.09´105 6.32´10-4 

 
Rct values (Fig. 6). The impedance value in the low-frequency region of Bode plots was significantly 
higher as a result of cyanide addition, which increased the value of Rct (Table 3). Addition of NaCN 
increased the coating resistance drastically and inhibited adsorption of KAX on Sample B. NaCN was 
the strongest depressant tested for Sample B according to the Rct values.  

It is clear that the addition of NaCN prior to KAX (NaCN:KAX) inhibited almost completely the 
collector adsorption. Prestige et al. has also reported that cyanide can significantly depress pyrite when 
it is added prior to the addition of collectors (Prestidge et al, 1993). A similar response was observed in 
the presence of SMBS and 7261A. Rct values were slightly higher in “Dep:KAX” experiments compared 
to that of “Dep” experiments.  The addition of KAX did not significantly affect the adsorption of the 
depressants for Sample B. However, the response of Sample B was different to that of Sample A in the 
presence of depressants. This difference is discussed in the next section of the paper. 

When the depressants were introduced after KAX, the reactions occurred in favour of the depressant 
adsorption. Comparison of the Rct values of KAX and “KAX:Dep” experiments showed that the 
depressants could replace the previously adsorbed KAX molecules and create a hydrophilic surface. 
This could be due to the competition for adsorption between the collector and depressant molecules, 
and the depressant molecules formed more stable compounds at the surface of pyrite particles.  

 
Fig. 6. Coating resistance (Rct) of Sample B under different experimental conditions at pH 9.2, 100 mV 

polarization potential. (NiI: absence of collector and depressants; KAX: collector; Dep:depressant; Dep:KAX 
depressant addition prior to KAX and KAX:Dep KAX addition prior to depressant) 

3.3. The relationship between mineral composition and adsorption of depressants 

The pyrite in Sample A contains higher As (in the form of Arsenopyrite) and Au, but lower S than that 
of Sample B. The presence of arsenopyrite in Sample A was considered as the main reason for the 
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differences in electrochemical characteristics and adsorption behaviour between the two samples.  
Sample A was more electrochemically active than Sample B according to the EIS spectra given in Fig. 3 
and Fig. 5, respectively. The chemical composition and electrochemical classification of the pyrite 
samples line up with the EIS results. Given that these two pyrite samples act completely different in the 
presence of depressants. 

As it was described in the previous above, the response of the electrodes to adsorption of the collector 
and depressants was evaluated based on the differences in Rct values. For example, the difference in Rct 
of “Nil” and “KAX” gives information about the adsorption of the collector, the difference between 
“Nil” and “Dep” shows adsorption of the depressants, etc.  

Fig. 7 shows the differences in Rct values to evaluate adsorption of KAX and the depressants (NaCN, 
SMBS and 7261A) on the pyrite surface in Sample A and Sample B.  ∆Rct of KAX was negative for both 
samples indicating adsorption of xanthate molecules. A higher rate of adsorption was observed with 
Sample A, which could be attributed to its higher electrochemical activity and Au content (Ertekin et al, 
2016). It has been shown that Au-containing pyrite particles have better collector adsorption and 
flotation performance than that of barren pyrite (Dunne, 2005; Huai et al, 2017; Monte et al,1997; Huai 
et al 2019; Klimpel, 1999).  

NaCN was the strongest depressant, and ∆Rct of NaCN was considerably higher than the other 
depressants. The rate of adsorption of SMBS and 7261A on the pyrite samples was similar. ∆Rct values 
of Sample B were slightly higher, particularly for NaCN and 7261A, indicating a higher rate of 
adsorption compared to Sample A.  

 
Fig. 7. The differences in Rct values of “Nil” and the experiments conducted with KAX, NaCN, SMBS and 7261A 

Adsorption of KAX on pyrite conditioned with the depressants was evaluated based on the 
differences between “Dep” and the experiments performed with depressants and collector 
(NaCN:KAX, SMBS:KAX, 7261A:KAX).  Fig. 8 shows that ∆Rct values of NaCN and SMBS of Sample A 
were negative after collector addition. This means that the collector molecules adsorbed on the surface 
even after conditioning with the strong depressants. It is likely that there were spots, such as Au 
containing sites, on the surface of pyrite suitable for collector adsorption. This was not observed with 
7261A, because it is a polysaccharide-based depressant, which adsorbs in the form of colloidal 
precipitates.  

Sample B showed completely different adsorption behaviour. ∆Rct was positive for all depressants, 
which means that the collector molecules could not adsorb on the surface after conditioning with the 
depressants. Effects of the sequence of collector and depressant addition are shown in Fig. 9. In these 
experiments, the electrodes were conditioned with KAX first and then with the depressants. Therefore, 
the Rct values were compared to the experiment performed with collector only “KAX”. ∆Rct values were 
positive for both samples, indicating adsorption of depressants after conditioning with the collector. 
∆Rct values of Sample B were considerably higher than that of Sample A. That means the pyrite in 
Sample B can effectively be depressed even after conditioning with KAX, a long chain and strong 
collector, compared to Sample A. 
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Fig. 8. The The differences in Rct values of “Dep” and the experiments conducted with NaCN:KAX, SMBS:KAX 

and 7261A:KAX 

Sample B can be considered as a pure pyrite sample with minor defects and responds to the addition 
of depressants as demonstrated by a number of researches and industrial applications. Sample A, on 
the other hand, contains a significant amount of Au and As, which significantly affect the 
electrochemical characteristics of the pyrite and hence the response to the depressants in this case.    

 
Fig. 9. The differences in Rct values of “KAX” and the experiments conducted with KAX:NaCN, KAX:SMBS and 

KAX:7261A 

4. Conclusions 

In this study, adsorption of three different depressants (NaCN, SMBS, and Aero7261A) on a Carlin trend 
ore (Sample A) and a sulfidic ore from South America (Sample B) was investigated by EIS measurement. 
The Chemical and hence electrochemical properties of the two pyrite samples were different. Sample A 
was more electrochemically active than Sample B according to the EIS spectra. Therefore, the rate of 
adsorption of the collector and the depressants was different for the two samples. A higher rate of 
collector adsorption was observed with Sample A. Besides, Sample B was showed a higher affinity 
towards adsorption of depressants than that of Sample A.  

According to EIS results, NaCN was the most effective depressant for both types of pyrite samples, 
followed by SMBS and 7261A.  The sequence of addition of collector (KAX) and depressant was also 
discussed in detail for both samples. As a result, the sequence of addition of the collector and 
depressants was significant for Sample A. Adsorption of the collector was observed after conditioning 
with the depressants. This was attributed to the presence of Au containing sites at the surface, which 
are suitable for collector adsorption even after the use of strong pyrite depressants such as NaCN. On 
the other hand, Sample B showed a completely different response to the sequence of addition of collector 
and depressants. The collector molecules could not adsorb on the pyrite particles conditioned with the 
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depressants. When the samples were conditioned first with the collector and then with the depressants, 
adsorption of depressants was observed for both samples, but at different rates. ∆Rct values of Sample 
B were considerably higher than that of Sample A.  

It can be concluded that EIS measurement is a useful method for testing various types of reagents 
for flotation conditions. EIS can be used as an alternative technique to the conventional batch scale 
flotation tests for pre-screening of various flotation reagents. Further tests should be conducted to link 
the EIS results, e.g. Rct values to flotation performance, grade, recovery, selectivity, etc. 
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